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Abstract—In this paper, we consider the coherent colocated
MIMO radar framework. We show in this paper that the MIMO
ambiguity function presents a range/angle coupling for any
waveform family except for perfectly orthogonal families that
are unrealistic in practice. We then propose a general model
for intrapulse coded MIMO waveforms, and we exhibit different
waveform families within this model. For each coding scheme,
the MIMO ambiguity function is studied and the range/angle
coupling characterized. We also compute the corresponding
Cramer-Rao Lower-Bounds. Finally real measurements obtained
from a MIMO radar permit to confirm the shape of the ambiguity
functions for the studied waveforms.

I. INTRODUCTION

Modern radar systems, for medium or long range appli-

cations, are generally based on active antennas, transmitting

the signals generated by agile waveform synthesizers, and

adaptively processing the received echoes, for extraction of

targets from clutter and identification of potential threats.

Standard surveillance modes involve electronic scanning

of a focused beam (Figure 1.a), successively exploring the

directions of interest with a sequence of search waveforms

(e.g. High Repetition Frequency bursts for long-range air-air

search, Low Repetition Frequency bursts for surface-based

radars), and removing ambiguities through comparison of the

received signals for the successive bursts at different repetition

frequencies and/or different wavelengths. Confirmation modes

may also be interleaved between the standard scanning modes

for improved detection probabilities in directions where ele-

mentary detections have been obtained.

Some modern radars also make use of a widened beam on

transmit (Figure 1.b), allowing for longer illumination time

and thus better extraction of targets, and combining multiple

receiving antennas for digital beamforming of focused pencil-

beams in parallel. This technique is for instance used for

surface-based radar, with a wide elevation beam on transmit

and so-called stacked beams on receive.

This paper deal with an alternative to these basic scanning

or staring modes, called coherent co-located MIMO [1], [2],

[3], [4]. It consists in space-time coding on transmit of each

individual transmitters (or sub-arrays), allowing to identify

each of them by a convenient processing on receive, and

hence to recover the angular directivity of the whole antenna.

From a radar functional point of view, everything appears

as if the directions were explored simultaneously by coded

Fig. 1. Transmission beams: a) scanning pencil beam; b) wide beam; c)
multiple simultaneous coded beams.

focused beams, as shown on (Figure 1.c), allowing a wide

angle domain to be explored instantaneously, without loss of

transmit directivity as with classical wide beam illumination

of Figure 1.b. It is worth noting that this coherent MIMO as

nothing to do with none-coherent (or statistical) MIMO, that

mainly exploits spatial diversity on target, using well separated

(multistatic, none-colocated) transmitting antennas [5], [6].

Coherent co-located MIMO is the only mean for a radar to

obtain an ultra-wide angular beam on transmit (more than the

classical factor 3 or 4 compared to the focused beamwidth)

with good sidelobe and mainlobe properties (ripple, sidelobe

level). Ultra wide beam are required for instance for transitory

targets (helicopter pop-up, periscope), or slow small moving

targets in competition with clutter and/or strong targets.

The coherent processing on receive is obtained via a general

matched filter in range, angles and Doppler. The corresponding

MIMO ambiguity function which represents the output of the

MIMO processing for a given set of transmitted signals, can

be derived. It is an interesting tool to characterize different

waveform families. This MIMO ambiguity function has been

extensively and theoretically defined and studied in [7], [3],

[8]. However most of the properties stated are obtained under

the assumption that the transmitted waveforms are perfectly

orthogonal for any (angle-range-doppler) target hypothesis. In

other words, in most cases authors do not consider the problem

induced by the range sidelobes and/or the spreading of the

signal energy in the range/angle plane, even though these

sidelobes may present a strong level. However these sidelobes

are of critical importance for the radar detection problem.

In this paper, we show that the MIMO ambiguity function

exhibits a range/angle coupling as soon as the transmitted

waveforms are not perfectly orthogonal, where the orthogo-
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nality is considered for any waveform and any time delay

values between the waveforms. Note that it is not possible

to find a set of waveform that satisfies this orthogonality, so

that range coupling will always occur in practice. We then

propose a general model for describing MIMO waveforms and

we present different possible families of waveforms that can be

used in coherent MIMO radars. For each family, we present the

specificity of the observed range/angle coupling. It comes that,

while for some waveform families the range/angle coupling

is approximately uniformly spread in the range/angle plane,

for some other waveform families it may be concentrated

in specific areas, even though the considered waveforms are

all orthogonal for the zero time delay. The computation of

Cramer-Rao Lower-Bound ellipses permits to quantify the

distortion of the ambiguity mainlobe. Finally, in order to check

the validity of the theoretical ambiguity function presented

here, a real experiment was conducted using a MIMO radar

demonstrator. The ambiguity functions obtained with these real

measurements fairly match the theoretical ones.

II. COHERENT MIMO AMBIGUITY FUNCTION

In this paper, we consider a transmitting array of NE

antennas and a receiving array composed of NR antennas.

The position of the mth antenna of the transmitting array is

denoted by vector xE,m while the position of the nth antenna

of the receiving array is given by vector xR,n. We assume that

the transmitting and receiving arrays are colocated. Of course,

in a more general setting, subarrays could be considered in

place of single antennas.

A. Expression of the MIMO ambiguity function

In the coherent colocated MIMO framework, all elementary

antennas (or subarrays) of the transmitting array transmit dif-

ferent waveforms. Denoting by sm(t) the waveform assigned

to the mth antenna, the signal transmitted by the array is

s(t, θ) =

NE−1∑
m=0

gEm(θ)ejx
T
E,mk(θ)sm(t),

where θ is the considered direction, k(θ) is the wave vector,
gEm(θ) is the gain of transmitting subarray m in direction θ
and the notation ·T represents the matrix transpose. If a target
is present in direction θc with delay τc and doppler νc, then
the signal received on the nth antenna is:

s
r
n(t) = g

R
n (θc)e

jxT
R,nk(θc)

NE−1∑

m=0

g
E
m(θc)e

jxT
E,mk(θc)sm(t−τc)e

j2πνct,

where gRn (θc) is the gain of receiving subarray n in direction

θc. Concatenating signals srn(t) from all receiving antennas

in a single vector s
r(t) = [sr0(t), s

r
1(t), . . . , s

r
NR−1(t)]

T ,

and transmitted waveforms sm(t) in a single vector s(t) =
[s0(t), s1(t), . . . , sNE−1(t)]

T , we get:

s
r(t) = sR(θc)

(
sE(θc)

T
s(t− τc)e

j2πνct
)
,

where sR(θ) and sE(θ) are the steering vectors for transmis-

sion and reception, whose nth elements are given by:

(sR(θ))n = gRn (θ)e
jxT

R,nk(θ) and (sE(θ))n = gEn (θ)e
jxT

E,nk(θ).

The optimal coherent MIMO processing on receive, where

we have skipped for simplicity the antenna gains, is given by:

r(τ, ν, θ) =

Beamforming on receive︷ ︸︸ ︷
NR−1∑
n=0

e−jxT
R,nk(θ)

Beamforming on transmit︷ ︸︸ ︷
NE−1∑
m′=0

e−jxT
E,m′k(θ)

×

∫
srn(t)s

∗

m′(t+ τ)e−j2πνt dt.︸ ︷︷ ︸
Transmitter separation and range compression

(1)

Clearly this optimal processing can be decomposed into

three steps: first, at each reception antenna, application of a

filter matched to each transmitted waveforms (i.e. NE matched

filters applied to NR received data, producing NENR output

data streams); second a transmission processing that permits

to retrieve the transmission phase; third a reception processing

that corresponds to the usual beamforming step.

Inserting the expression of srn(t) in (1) and replacing ν−νc
by ν and τ − τc by τ provides the MIMO ambiguity function

given by [3]:

A(τ, ν, θ, θc) =

(
NR−1∑
n=0

ejx
T
R,n(k(θc)−k(θ))

)
×

NE−1∑
m′=0

NE−1∑
m=0

ejx
T
E,mk(θc)−jxT

E,m′k(θ)

∫
sm(t)s∗m′(t+ τ)e−j2πνt dt,

(2)

which is a function of four parameters (delay, doppler, target

angle, reception angle) if only one angle direction (azimuth

or elevation) is considered. If two directions were considered,

it would become a function of six parameters. Note that the

target angle and the reception angle cannot be summarized by

only one angle parameter because in coherent MIMO, signals

received by two targets in two different directions differ.

Using the above vector notation, the ambiguity function can

be rewritten in the following way:

A(τ, ν, θ, θc) =
(
s
H
R (θ)sR(θc)

)
×

s
T
E(θ)

(∫
s(t)sH(t+ τ)e−j2πνt dt

)
s
∗

E(θc),

where x
H is the hermitian transpose of vector x.

Since the reception processing is completely decoupled in

equation (2), we may consider only the following expression,

corresponding to the case of one single reception antenna:

Ae(τ, ν, θ, θc) = s
T
E(θc)

(∫
s(t)sH(t+ τ)e−j2πνt dt

)
s
∗

E(θ).

(3)

For applications where the Doppler effect is negligible

within the pulse duration, it can be decoupled in the expression

(3). This is the case for instance for the detection of slow

moving targets. For simplicity, we restrict our analysis to that

approximation in the following, and (3) can be simplified

further to:

Ae(τ, θ, θc) = s
T
E(θc)S(τ)s

∗

E(θ), (4)
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where

S(τ) =

∫
s(t)sH(t+ τ) dt

is the matrix containing all the information about the auto and

cross correlations of the transmitted waveforms.

Other theoretical properties of the MIMO ambiguity func-

tion have been thoroughly presented and discussed in [3], [8].

B. Coupling effect between delay and angle parameters

From the expression of the MIMO ambiguity function (4), it

can be seen that effects of delays and angles cannot generally

be decoupled, except for two specific cases:

• S(τ) = λs(τ)1NE×NE
where 1NE×NE

is a matrix of

size NE×NE filled with ones and λs(τ) is a correlation

function. In that case, the ambiguity function becomes:

Ae(τ, θ, θc) =
(
s
T
E(θc)1NE×NE

s
∗

E(θ)
)
λs(τ).

This case arises when sm(t) = s(t) for all m, i.e. the

classic phased array where all transmitted signals are

identical; it is of no interest in the MIMO framework.

• S(τ) = λs(τ)INE
where INE

is the identity matrix. In

that case, the ambiguity function becomes:

Ae(τ, θ, θc) =
(
s
T
E(θc)s

∗

E(θ)
)
λs(τ).

This arises when all cross ambiguities are equal to zero

for all τ and all auto ambiguities are identical, i.e.:∫
sm(t)s∗m′(t+ τ) dt = λs(τ)δm,m′ ,

where δm,m′ is the Kronecker operator. In other words,

it means that the transmitted waveforms are perfectly

orthogonal.

The second case is very interesting since it implies for instance

that an error in the estimated delay will not necessarily induce

an error in the estimated direction. Unfortunately it cannot be

exactly achieved in practice since it is not possible to generate

NE perfectly orthogonal waveforms with identical autocorre-

lations. It is however possible to design approximately orthog-

onal signals. Then, delays and angles may be approximately

decoupled again. The counterpart will generally be an increase

in the sidelobe level. We will now present several possible

waveform families achieving this approximated orthogonality.

III. COHERENT MIMO WAVEFORMS

In this section, we present first a general formalism for

intrapulse coding of MIMO waveforms. Then we present

several different coding schemes. For all the results presented

in the following, the parameters used for the simulations

have been set (unless differently specified) to: NE = 12
transmission antennas, Tp = 63.5 μs.
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Fig. 2. General intrapulse coding scheme.

A. Intrapulse coding formalism

We consider here that the MIMO radar transmits a pulse

train. Each antenna transmits its specific waveform during one

pulse, and we assume here that this waveform is identical

from pulse to pulse. Therefore the orthogonality between the

different waveform arises only from the intrapulse coding.

Each pulse can be decomposed into Nc time slots or

“chips”. To each time slot and each antenna can be assigned

specific phases and frequencies. We therefore propose the

general model for intrapulse coding:

sm(t) =

Nc−1∑
p=0

Wmpe
j2πFmptu(t− pΔt),

where Wmp and Fmp represent the phase and the frequency

associated to the signal transmitted by the antenna m during

the time slot p. Δt represents the duration of one chip, and u(t)
represents the elementary waveform, that can be for instance

a simple rectangular pulse or a linear frequency modulated

signal (“chirp”). This expression permits to design at the same

time waveforms with phase and/or frequency coding. Such a

code is represented in figure 2. Note that the number of chips

Nc can be set as desired depending on the signal to transmit.

For instance, if the transmitted pulse is a chirp, then we can

set Nc = 1 and use a chirp for elementary pulse u(t).
Using the vectorial notation, the transmitted signal can be

expressed as:

s(t) = (W ◦ F(t))u(t),

where ◦ represents the Hadamard product, W and F(t) are

matrices of size NE × Nc whose elements are respectively

provided by Wmp and ej2πFmpt, and

u(t) = [u(t) u(t−Δt) . . . u(t− (Nc − 1)Δt)]
T .

We will now present different families of codes that can be

used in MIMO radar.

B. Circulating pulse (TDMA)

A first simple code is the circulating pulse, that consists in

transmitting different cyclic permutations of the same code on

the different antennas. This code can be defined by setting

W = C(s) and F(t) = 1NE×Nc
,
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Fig. 3. Range - angle cut of the MIMO ambiguity function of the circulating
pulse for θc = 0 with a PN sequence of length Nc = 127. NE = 12

transmission antennas. Tp = 63.5 μs, B = 2 MHz. One single antenna on
receive.

where C(s) is the circulant matrix built from signal code s

containing Nc chips.

This code fulfills the orthogonality condition for τ = 0 if

the code used presents good periodic autocorrelation features

(for instance a PN sequence) but not for non zero delays,

thus limiting the range resolution to that corresponding to the

bandwidth of s multiplied by the number of antennas. Cuts of

the resulting ambiguity function are presented in figure 3 for

the target position θc = 0. Let us notice that for that specific

code, the transmission directivity has been obtained at the price

of a loss in the range resolution.

C. One frequency per antenna (FDMA)

Another simple case to consider is the case where all

antennas transmit signals at different frequencies. This strategy

corresponds to the FDMA multiplexing in digital communi-

cations. It corresponds to

Nc = 1, W = 1NE×1 and F = [0,Δf , . . . , (NE−1)Δf ]
T ,

where Δf is a frequency interval larger or equal to the signal

bandwidth, i.e. Δf ≥ B with B the bandwidth of u(t).
Clearly the transmitted signals are orthogonal since they do

not share the same frequency domains. But this is not enough

to get perfect delay - angle decoupling. Indeed, if the initial

phases are the same for the different signals, then the signal

transmitted by the array at a given time instant t is the vector

[1, ej2πΔf t, . . . , ej2π(NE−1)Δf t]T

which corresponds to a direction θ = asin(2Δf t) when

considering a linear array with antennas separated by λ/2.

Therefore this coding scheme resorts to a fast sweeping of

the different angular directions during the pulse duration. This

also means that the signal received in direction θ at a given

time t is similar to the signal received in direction 0 at time

t′ = sin(θ)/(2Δf ), thus leading to a noticeable delay - angle
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Fig. 4. Range - angle cut of the MIMO ambiguity function for the FDMA
coding scheme with elementary bandwidth B = 166.67 kHz (i.e. total
bandwidth Btot = 2 MHz). NE = 12 transmission antennas. Tp = 100

μs.

coupling along the line τ = 1/(2Δf) sin(θ), or, by replacing

the delay by the range, d = c/(4Δf ) sin(θ) where the range

is d = cτ/2 and c is the wave velocity. This coupling can

be easily seen in figure 4 that presents the MIMO ambiguity

function for the FDMA coding scheme with B = 166.67 kHz,

where Δf has been set to B. Interestingly we can notice that

the mainlobe width corresponds to the overall bandwidth used,

equal to Btot = 2 MHz.

D. One phase code per antenna (CDMA)

We have seen that perfect orthogonality is desired to

remove the range/angle coupling. Even though this perfect

orthogonality cannot be obtained, it is possible to consider

code families that present features close to this orthogonality.

For instance, some classes of codes have been designed in

digital communications to exhibit very good autocorrelation

and crosscorrelations properties. This is the case for instance

for the Gold codes [9]. Although the good properties of these

codes are theoretically obtained for periodic correlations, they

remain interesting in the considered aperiodic case.

For phase codes, the number of chips Nc is set so as to

provide a given desired bandwidth. Then the frequency matrix

is simply set to F = 1NE×Nc
while the phase matrix W

is provided by the considered phase codes. The ambiguity

function for the Gold codes is presented in figure 5. We can

notice that for this class of codes, the range/angle sidelobes

are approximately uniformly spread in the range/angle plane.

Therefore approximate decoupling has indeed been obtained,

at the cost of a relatively high sidelobe level that may be

problematic in the presence of spread clutter.

E. Cramer-Rao-Lower-Bound ellipses

The range/angle coupling discussed previously can also

be highlighted thanks to the well-known Cramer-Rao-Lower-

Bound (CRLB) [10]. This CRLB is given by the inverse of

160



-40 -20 0
-5

-4

-3

-2

-1

0

1

2

3

4

5

R
an

ge
 [k

m
]

Phase codes (Gold), B = 2 MHz, theoretical signals

 

 

−40

−35

−30

−25

−20

−15

−10

−5

0

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-40

-30

-20

-10

0

sin(θ)

Fig. 5. Range - angle cut of the MIMO ambiguity function for the CDMA
coding scheme with Gold code of length Nm = 127. Nt = 12 transmission
antennas. Tp = 100 μs, B = 2.55 MHz.

the Fisher information matrix J. In radar, each term Jkl of

this matrix can be computed from the ambiguity function by:

Jkl = −SNRout

∂2|Ae(τ, θ, θc)|
2

∂γk∂γl
,

where γk is one of the parameters τ , θ, θc, and SNRout

is the SNR at the output of the MIMO processing. For the

sake of simplicity, we will consider only the two parameters

τ and θ. In that case, J is a 2 × 2-matrix. Computing this

matrix and the corresponding CRLB can provide insight on

the range/angle coupling for a given coding scheme. Indeed

the CRLB matrix defines an ellipse corresponding to the

minimal possible bound that can be achieved for estimating the

corresponding estimator. We present in figure 6 this ellipses for

the three codes discussed in the previous sections. Note that

these ellipses are computed on the code after the band-pass

transmission filter which permits to limit the bandwidth for

phase codes. Clearly the shapes of the ellipses differ between

the codes. In particular the CRLB ellipse for the FDMA code

shows a clear range/angle coupling. This coupling induces an

increase of the minimal variance of the estimator in range and

angle that can be achieved for this specific coding scheme.

Among the three studed codes, the one producing the CRLB

ellipse with the smallest surface is the CDMA code, thus

allowing the best estimate for single target estimation. On the

contrary this code provides the highest sidelobe level, spread

over the whole ambiguity domain, which prevent against its

use in strong clutter situations or for weak target detection.

IV. EXPERIMENTS ON A MIMO RADAR DEMONSTRATOR

Many different effects of reality are not taken into account

in the theoretical data, especially material defaults like non-

linear phase of microwave transmit/receive chains and antenna

couling (inducing impedance mismatch) and also non-optimal

propagation like multipath. One threat with the MIMO is

that a ”localized” issue, for example a defective transmission

-100
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n
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FDMA
CDMA

Fig. 6. CRLB ellipses in range and reception angle for the TDMA, FDMA
and CDMA codes discussed previously with same parameters.

antenna, may damage the orthogonality between the related

waveform and all others, and therefore induce an additive

”noise” on the global ambiguity function. To measure the

possible effects induced by these defaults on the MIMO

ambiguity function, we proceeded experimental tests with a

real MIMO radar: HYCAM.

A. The HYCAM platform

A multifunction MIMO radar - named HYCAM - has been

designed and build by ONERA. The objective was to develop

a system taking into account nowadays radar architecture but

also foremost future radar concepts like MIMO. It operates

in S band with a bandwidth up to 500 MHz. The antenna

arrays are composed of 12 electronically steerable columns

for the transmission and 16 reconfigurable mono-pulse capable

columns for the reception. Up to 3 intermediate frequency

signals can be simultaneously up-converted and provided to

the antennas through an optical rotary joint. Consequently, this

make it possible to work as real MIMO with the generation and

transmission of 3 orthogonal waveforms. Once captured, the

received signals are downlinked through the optical fiber, then

converted, digitalized and recordered for later data analysis.

B. Sequential MIMO experiments

The aim of the experiments is to acquire data in the context

of sequential MIMO transmission with HYCAM to a specific

target simulator. The signals are generated by an Arbitrary

Waveform Generator (AWG). We want to test families of 12

waveforms but since HYCAM cannot proceed more than 3

different signals simultanously, the transmissions and acqui-

sitions are done sequentially: each waveform is transmitted

”one by one” by the related antenna. A target simulator facing

HYCAM at 250 meters has the ability to apply a delay and

a Doppler to the signal, such that it is possible to extract the

transmitted signal from the clutter during the processing phase.

The successive received signal are calibrated and summed in

order to recover the equivalent MIMO situation.
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Fig. 7. Range - angle cut of the MIMO ambiguity function of the circulating
pulse with a PN sequence of length Nc = 127 obtained from real HYCAM
data. NE = 12 transmission antennas. Tp = 63.5 μs, B = 2 MHz. One
single antenna on receive.
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Fig. 8. Range - angle cut of the MIMO ambiguity function for the FDMA
coding scheme with elementary bandwidth B = 166.67 kHz (i.e. total
bandwidth Btot = 2 MHz) obtained from real HYCAM data. NE = 12

transmission antennas. Tp = 100 μs.

C. Results and analysis

The same waveform families as the ones studied in section

III have been used for the experiments. The ambiguity func-

tions measured from the acquired data are shown in figures 7, 8

and 9. They can be directly compared to theoretical figures 3,

4 and 5 respectively. Despite some slightly higher sidelobes, it

is visible that experimental ambiguity functions obtained from

real data are close to the theoretical ones. In fact the discrep-

ancy is relatively small for the three waveform families, and

generally limited to some local changes in the sidelobe levels.

In particular their properties, such as range/angle coupling and

sidelobe level, have been fairly well preserved.

V. CONCLUSION

In this paper, we have studied the MIMO ambiguity func-

tion. We have shown that, in its general form, it implies a

range/angle coupling, unless the transmitted waveforms are

perfectly orthogonal. Although this perfect orthogonality is

-40 -20 0
-5

-4

-3

-2

-1

0

1

2

3

4

5

R
an

ge
 [k

m
]

Phase codes (Gold), B = 2 MHz, HYCAM facing the target simulator

 

 

−40

−35

−30

−25

−20

−15

−10

−5

0

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-40

-30

-20

-10

0

sin(θ)

Fig. 9. Range - angle cut of the MIMO ambiguity function for the CDMA
coding scheme with Gold code of length Nm = 127 obtained from real
HYCAM data. Nt = 12 transmission antennas. Tp = 100 μs, B = 2.55
MHz.

assumed in most of the papers, it cannot be achieved in

practice, so that range/angle coupling will always occur. We

have therefore studied this feature for three different coding

schemes that may take the form of a diagonal ridge in

the range/angle plane, or relatively high sidelobes spread

over the whole ambiguity domain. We have also shown that

a quantitative insight on the range/angle coupling can be

provided by CRLB ellipses. Measurements obtained from

a real MIMO radar have permitted to show a fairly good

match between theoretical ambiguity functions and measured

ambiguity functions taking into account many transmission

defaults. Finally, note that methods for generating new families

of quasi-orthogonal waveforms with better range/angle cou-

pling and/or sidelobe levels would be very relevant to produce

interesting MIMO ambiguity functions.
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